Séminaire Algo - Éric Fusy
20-Oct-2020 14:00
Age: 132 days

Éric Fusy
Intervalles de Tamari généralisés et cartes planaires orientées
Zoom (if you want to participate, please request the meeting password. If your interest in the seminar is more general, you can request to be added to the announcement mailing list which will contain the password for each meeting)
La combinatoire des intervalles de Tamari, initiée par Chapoton, est une domaine très actif depuis une dizaine d'années, avec de riches propriétés énumératives. En particulier une construction due à Bernardi et Bonichon (s'appuyant sur les bois de Schnyder) établit une bijection entre intervalles de Tamari de taille n et triangulations à n sommets internes. Le treillis de Tamari a été récemment étendu par Préville-Ratelle et Viennot aux treillis dits de nu-Tamari, et dans ce contexte on parle d'intervalles de Tamari généralisés. Fang et Préville-Ratelle ont montré que les intervalles généralisés sont en bijection avec les cartes planaires non-séparables, par une approche bijective à base d'arbres étiquetés de parcours en profondeur. Nous montrerons ici deux autres approches bijectives. La première s'appuie sur les décompositions séparantes de quadrangulations et est une extension de la bijection de Bernardi et Bonichon. La seconde spécialise la bijection de Bernardi et Bonichon aux intervalles de Tamari dits synchronisés, qui s'identifient aux intervalles généralisés.
Travaux en commun avec Abel Humbert.
<- Back to: Accueil
|